
Outline	of	BJC	Unit	1:	Introduction	to	Snap!	Programming	

Description	

Programming	
In the very first lab, students dive right into creating a simple game-app that they can share with their smart-phone. They learn several
technical details: how to log in; save work; build scripts; “package” a script by building a custom block (procedure) with input
parameters; get a sprite to draw, follow a motion, and interact with another sprite. Then they begin their second creative project,
building a block that can produce grids of various dimensions for games like Tic Tac Toe and Sudoku. They learn how Snap! can
perform calculations for them, and how to use those calculations to automate the process of fitting the game board grids to the screen.
The projects emphasize the sensible use of abstraction as an organizing and simplifying tool.

Social	Implications	
Students discuss social implications of computing, including video games, privacy, and an introduction to the general question of
whether or to what extent technology is good or bad.

Big	Ideas	1,	2,	4,	5,	7	
Students are introduced to foundational concepts of programming (Big Idea 5) including loops, variables, and procedures, and apply
these in small programming projects in which they are encouraged to explore creatively and embellish their programs to support the
creative (Big Idea 1) development of interesting computational artifacts. As students learn to develop and evaluate algorithms (Big
Idea 4) for implementation and execution on a computer, they see that complex programs can be simplified by using abstraction (Big
Idea 2) to manage the complexity. Unit 1 includes a Social Implications lab, beginning a study of global impact (Big Idea 7) that is
maintained throughout the course. The Unit 1 Social Implications topic is on privacy, violent video games, and innovations.	

Computational	Thinking	P3,	P4,	P5,	P6		
One way students develop their computational thinking skills is through programming and analyzing the programs of others. For
example, students are asked to predict what they think will result from a given Snap! script. Making such predictions requires students
to make sense of the sequential nature of the code. Students are introduced to one use of abstracting (P3) in packaging a collection of
details in a form that more clearly expresses their meaning or purpose. They will expand their understanding of abstraction throughout
the course. The emphasis on Pair Programming in Unit 1 establishes the regular practice of communicating (P5) and collaborating

(P6) to solve problems. Students analyze problems (P4) about the broader world of computing by exploring its impacts. Students
cultivate analytic thinking skills as they debate and sometimes write about important and complex social issues.

Enduring	Understandings	
• EU 2.2 Multiple levels of abstraction are used to write programs or create other computational artifacts.

• EU 3.3 There are trade-offs when representing information as digital data.
• EU 4.1 Algorithms are precise sequences of instructions for processes that can be executed by a computer and are

implemented using programming languages.
• EU 5.1 Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve

problems (to help people, organizations, or society).
• EU 5.2 People write programs to execute algorithms.

• EU 5.3 Programming is facilitated by appropriate abstractions.
• EU 5.5 Programming uses mathematical and logical concepts.

• EU 7.3 Computing has a global effect — both beneficial and harmful — on people and society.
• EU 7.4 Computing innovations influence and are influenced by the economic, social, and cultural contexts in which they are

designed and used.

Learning	Objectives	
• LO 2.2.1 Develop an abstraction when writing a program or creating other computational artifacts. [P2]
• LO 3.3.1 Analyze how data representation, storage, security, and transmission of data involve computational manipulation of

information. [P4]

• LO 4.1.1 Develop an algorithm for implementation in a program. [P2]
• LO 4.1.2 Express an algorithm in a language. [P5]

• LO 5.1.2 Develop a correct program to solve problems. [P2]
• LO 5.1.3 Collaborate to develop a program. [P6]

• LO 5.2.1 Explain how programs implement algorithms. [P3]
• LO 5.3.1 Use abstraction to manage complexity in programs. [P3]

• LO 5.4.1 Evaluate the correctness of a program. [P4]
• LO 5.5.1 Employ appropriate mathematical and logical concepts in programming. [P1]

• LO 7.3.1 Analyze the beneficial and harmful effects of computing. [P4]
• LO 7.4.1 Explain the connections between computing and economic, social, and cultural contexts. [P1]	

Major	Activities/Requirements	for	Completing	Unit	
Activities and Learning Opportunities Relationship to the

Enduring Understandings
Relationship to the
Learning Objectives

Lab 1: Building an App
• Students build a simple game they

can play on their phones, in which
players try to click on a character
as it moves around the screen.

Students write programs to execute
algorithms (EU 5.2) that implement a
sequence of instructions for the computer
to follow (EU 4.1).
This lab builds toward these EUs by
focusing on a simple game algorithm in
which students explore procedures that
control sprite appearance and movement.
This lab provides line-by-line support for
project development as students
familiarize themselves with the Snap!
programming interface.

Students collaborate to develop a program
in Snap! (LO 4.1.2) to execute algorithms
that control sprite appearance and
movement (LO 5.1.3) in order to
implement the desired behavior in a
simple game (LO 4.1.1).

Lab 2: Sprite Drawing and Interaction
• Students experiment with basic

sprite commands, including turn
and move, and use loops to create
scripts in which sprites draw and

Students continue to write programs to
execute algorithms (EU 5.2), ordered
sequences of instructions (EU 4.1),
throughout the curriculum.
Now, students combine commands to

Students analyze how several programs
implement algorithms (LO 5.2.1), e.g.
discussing how a short algorithm with a
loop generates the image of a square;
comparing and contrasting various square-
drawing algorithms; and predicting what

follow each other or the mouse. develop programs according to their own
ideas, curiosity, and quest for knowledge
(EU 5.1).
This lab builds toward these EUs by
focusing on slightly more advanced
algorithms involving loops and sprite
orientation, positioning, and
communication. This lab includes mini-
projects that allow students to make
creative choices including messages to the
user and drawing experiments.

an algorithm does.

Lab 3: Building Your Own Blocks
• Students create a “draw square”

procedure that accepts a “size”
variable input and design and
debug other procedures that call
the first procedure several times to
create a design.

Students use the abstraction of a “draw
square” algorithm to facilitate (EU 5.3)
the writing of programs with a higher level
of abstraction (EU 2.2) that call the “draw
square” algorithm.
This lab builds toward these EUs by
focusing on custom procedures. The lab
requires students to create several short
scripts (some of which accept input
values) and to use scripts within other
scripts.

Students develop the abstraction (LO
2.2.1) of a “draw square” procedure to
manage complexity (LO 5.3.1) in a
program that draws designs with multiple
squares. They also learn to debug their
programs (LO 5.4.1) and how to use
debugging practices to develop bug-free
programs (LO 5.1.2).

Lab 4: Building Grids for Games
• Students differentiate between

commands, which carry out
actions, and reporters, which
report a value and can be used as
inputs.

Students learn about mathematical and
logical concepts (EU 5.5) as they evaluate
expressions needed to draw and position a
game board on the stage.
This lab builds toward this EU by focusing
on several mathematical ideas essential to
computer science including formalizing
screen positioning and orientation, syntax

Students employ the following
mathematical and logical concepts of
programming (LO 5.5.1): rounding,
modulo, numerical operators (e.g., +), and
Boolean values (True, False), and
analyze code with nested operations.

of order of operations, rounding, modulo,
and Boolean values and operators. The lab
requires students to evaluate arithmetic
expressions without the Snap! interface
and to experiment with less-familiar
operations.

Lab 5: Explosion of Bits; Games and
Violence

• Students read about and discuss
ways the world has been changed
by computing, consider their own
experiences with technology,
compile a list of computing
innovations, and seek evidence for
ways that technology can be both
good and bad.

Through readings, discussion, and debate,
students consider some of the trade-offs of
representing information digitally (EU
3.3); how computing offers both benefits
and risks to people and society (EU 7.3);
and the relationships between computing
innovations and the contexts in which they
are used (EU 7.4).
This lab builds toward these EUs by
focusing on impacts of technology on
students’ lives, technological innovations,
issues of privacy, and violence in video
games. The lab requires students to write a
technology autobiography, brainstorm
computing innovations, read about some
of the impacts of technology on society,
and discuss and debate impacts of
technology on human lives.

Students analyze the effects of computing
as they debate the impact of violent video
games on youth violence (LO 7.3.1);
consider the implications of data practices
(e.g. privacy, free-speech, etc.) involved in
managing and manipulating people’s data
(LO 3.3.1); and connect computing to
social and cultural contexts (LO 7.4.1).

Outline	of	BJC	Unit	2:	Conditionals	and	Abstraction	

Description		

Programming	
The programming labs of Unit 2 introduce conditionals, predicates, and script variables, and use small projects in language/linguistics,
music, art, sprite-interaction, simple encryption, and mathematics both as contexts for practice of the computer science concepts and
also to illustrate the broad variety of directions students’ own projects can take. Lab 1 also introduces the power of lists,
foreshadowing a deeper study of lists in Unit 3.
Unit 2 programming labs continue a focus on structure and abstraction. Starting with the challenging task of teaching the computer to
generate the plurals of nouns (e.g., butterfly → butterflies, moth → moths, bush → bushes), students begin thinking about
the structure of programs. They learn to test for special cases, and how to use, sequence, and optimize the conditionals that control a
program based on those cases. They learn to chunk details of a process into meaningful, recognizable parts, creating “specialist”
blocks so that the main top-level block can show the structure of the program un-camouflaged by the details. This makes reading and
debugging code easer, and allows the “specialist” blocks to be refined without requiring revision to the overall program. All of these
are at the heart of the Abstraction standard of AP CS Principle and are core to mathematical thinking as well as computer science.
Students also begin to think about what makes correctly working code “good” code—is it the brevity, the clarity, or some
combination? (They do not yet encounter situations in which the speed-efficiency of the code can be a criterion.) This, too, helps them
begin to attend to structure. They learn to think about debugging by deliberately looking for ways to make a program fail, and then
finding ways to avert failures.

Social	Implications	
Students consider the innovations around us that collect data about us, the availability of information online, why privacy is good to
protect, reasons for giving up privacy and how to best they can protect their own online privacy. Students also examine
communications technology and ways that computing impacts community (including cyberbullying).

Big	Ideas	1,	2,	4,	5,	7	
The major programming (Big Idea 5) focus of Unit 2 is on structure and abstraction (Big Idea 2). Students learn to chunk details of
algorithms (Big Idea 4) into meaningful, recognizable parts by creating “specialist” procedures so that the top-level procedure can
show the structure of the program un-camouflaged by the details. This makes reading and debugging code easer and allows the
“specialist” procedures to be reused in other algorithms and to be refined without requiring revision to higher-level procedures.

Students are offered a choice of programming projects designed to strengthen these ideas with creative (Big Idea 1) tasks. The unit
also includes a Social Implications lab on data privacy, cyberbullying, and impacts on community building, addressing global impact
(Big Idea 7).

Computational	Thinking	P1,	P2,	P3,	P4,	P5,	P6	
The increased challenge of Unit 2’s programs gives pair programmers good reason and plenty of practice to develop communication
(P5) and collaboration (P6) skills because those skills are genuinely needed as students create these more complex computational
artifacts (P2). Over the course of the year, the discussions of social implications also help to develop those communication and
collaboration skills and create a context for broader discussion of hard social issues.
The focus on structure, abstraction (P3), and debugging in Unit 2 also supports students analyzing problems and digital artifacts
(P4) for they must determine where abstraction is needed and how to implement it and then critique their own code in their attempt to
improve it and resolve errors.
In the Social Implications Labs, students connect computing (P1) to issues they can identify with, both the impacts of computing and
the connections between people and computing.

Enduring	Understandings	
• EU 1.1 Creative development can be an essential process for creating computational artifacts.

• EU 1.2 Computing enables people to use creative development processes to create computational artifacts for creative
expression or to solve a problem.

• EU 1.3 Computing can extend traditional forms of human expression and experience.
• EU 2.2 Multiple levels of abstraction are used to write programs or create other computational artifacts.
• EU 3.2 Computing facilitates exploration and the discovery of connections in information.

• EU 3.3 There are trade-offs when representing information as digital data.
• EU 4.1 Algorithms are precise sequences of instructions for processes that can be executed by a computer and are

implemented using programming languages.
• EU 5.1 Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve

problems (to help people, organizations, or society).

• EU 5.2 People write programs to execute algorithms.
• EU 5.3 Programming is facilitated by appropriate abstractions.

• EU 5.4 Programs are developed, maintained, and used by people for different purposes.
• EU 5.5 Programming uses mathematical and logical concepts.

• EU 7.1 Computing enhances communication, interaction, and cognition.
• EU 7.3 Computing has a global effect — both beneficial and harmful — on people and society.

Learning	Objectives		
• LO 1.1.1 Apply a creative development process when creating computational artifacts. [P2]

• LO 1.2.1 Create a computational artifact for creative expression. [P2]
• LO 1.2.4 Collaborate in the creation of computational artifacts. [P6]

• LO 1.3.1 Use computing tools and techniques for creative expression. [P2]
• LO 2.2.1 Develop an abstraction when writing a program or creating other computational artifacts. [P2]

• LO 2.2.2 Use multiple levels of abstraction to write programs. [P3]
• LO 3.2.2 Use large data sets to explore and discover information and knowledge. [P3]

• LO 3.3.1 Analyze how data representation, storage, security, and transmission of data involve computational manipulation of
information. [P4]

• LO 4.1.1 Develop an algorithm for implementation in a program. [P2]
• LO 5.1.2 Develop a correct program to solve problems. [P2]

• LO 5.1.3 Collaborate to develop a program. [P6]
• LO 5.2.1 Explain how programs implement algorithms. [P3]

• LO 5.3.1 Use abstraction to manage complexity in programs. [P3]
• LO 5.4.1 Evaluate the correctness of a program. [P4]

• LO 5.5.1 Employ appropriate mathematical and logical concepts in programming. [P1]
• LO 7.1.1 Explain how computing innovations affect communication, interaction, and cognition. [P4]

• LO 7.1.2 Explain how people participate in a problem-solving process that scales. [P4]
• LO 7.3.1 Analyze the beneficial and harmful effects of computing. [P4]

Major	Activities/Requirements	for	Completing	Unit	
Activities and Learning Opportunities Relationship to the

Enduring Understandings
Relationship to the
Learning Objectives

Lab 1: Conditional Blocks
• Students use conditionals

(especially if-else and if) and
predicates (such as < or =) to
control the behavior of their
programs. Using multiple if
statements to distinguish multiple
conditions, students design one
program that sets a traffic signal to
the inputted color and another to
decide how to make the plural of a
noun.

Throughout Unit 2, students continue to
design sequences of instructions to solve
problems (EU 4.1) and to write programs
to execute these algorithms (EU 5.2).
In order to create a program that correctly
constructs the plural form of an input word
(EU 5.1), students use abstraction—in this
case, specialist procedures—to manage
complexity (EU 5.3).
This lab builds toward these EUs by
focusing on conditionals (if-else and
if) to control the behavior of a program.
The lab requires students to develop a
program that uses predicates to test for
various conditions and use conditional
blocks to control programs based on those
conditions. This lab also focuses on
abstraction through analyzing tasks to
break them into subtasks and then creating
blocks that specialize in these subtasks and

As they do throughout the unit, students
collaborate (LO 5.1.3) as they develop an
algorithm (LO 4.1.1).
Students develop specialist procedures to
handle special cases of singular nouns in
specific ways, (LO 2.2.1) to manage the
complexity, readability, and debuggability
of their plurals program (LO 5.3.1).
Students analyze a script to determine
what is likely to go wrong before running
it (LO 5.4.1) and use this developing
understanding to create correct programs
to calculate powers of numbers and count
the number of vowels in a sentence (LO
5.1.2).

through analyzing and debugging scripts.
Lab 2: Script Variables

• Building on their experience with
input variables, students build local
variables (called “script variables”
in Snap!), and choose from among
a set of small projects that offer
practice with building selection
procedures and debugging.

As students choose from among a variety
of programs to develop, they have the
opportunity to appreciate the range of
purposes for which people create
programs (EU 5.4), whether for creative
expression, personal curiosity, knowledge
generation, or problem solving (EU 5.1) .

Students develop their computational
artifacts for creative expression or to solve
a problem (depending on the project
chosen) (EU 1.2) and experience how
computing can extend traditional forms of
human expression and experience (EU
1.3).
This lab builds toward these EUs by
focusing on the script variables
procedure, which allows students to create
local variables.

Students collaborate (LO 1.2.4) to create a
program—a computational artifact—for
creative expression in art, language, or
mathematics (LO 1.2.1) by using Snap!
and the graphics and information-
processing techniques they have learned
(LO 1.3.1).
As a class, students predict how
algorithms will be implemented (LO
5.2.1).

Lab 3: Tools and Techniques
• Students work through four short

activities—essentially how-to’s—
showing techniques that are useful
in more complex programming
tasks. Students get a bit more
experience with Boolean
expressions. They learn how to
indicate the intended type of an
input to a block—whether the
intended input is to be a number, a

Students work on programs using
mathematical and logical concepts (EU
5.5).
This lab builds toward these EUs by
focusing on the mathematics of computer
science including basic arithmetic
operations, the round block, the mod
block, the random block, and logical
operators. The lab also provides practice
composing functions.

Students learn about object type—e.g.,
text, number, string—and learn how to
specify that an input is intended to be a
number. They focus attention on number
as one of the fundamental object types in
programming (LO 5.5.1).

string, a list, or something else.
They get a bit more practice
creating reporter blocks that take
multiple inputs, and they use a
composition of functions on those
inputs. And they compare multiple
correct ways of solving a problem,
thinking about the esthetics of
programming.

Lab 4: Abstraction
• Students build two complex games

(a board game and a number
guessing game) that focus on using
abstraction to write clear,
debuggable, and improvable code.
Students are given goals,
specifications, and guidance on
structuring the programs, but they
must find their own ways to build
the parts. To start, students ease
into abstraction by drawing a brick
wall row-by-row and brick-by-
brick.

Students continue to work on programs
using multiple levels of abstraction (EU
2.2, EU 5.3).
The challenges of these more complex
tasks—particularly the challenges in
developing the game board—require an
iterative and exploratory process in order
to achieve a properly working program
(EU 1.1).
This lab builds toward these EUs by
focusing on ideas of abstraction to write
clear, debuggable, improvable code. This
lab provides goals and specifications for
the programs and guidance on structuring
them. The lab emphasizes abstraction
through the development of procedures
with a special purpose, and students must
specify the type of mathematical and
logical input that a procedure is expecting
to receive.

Students use an iterative and exploratory
development process (LO 1.1.1) and
multiple levels of abstraction as they
create these apps. Students use multiple-
levels of abstraction as they draw a brick
wall by calling a procedure that draws
rows of bricks which in turn calls a
procedure that draws an individual brick
(LO 2.2.1, LO 2.2.2, LO 5.3.1).

Lab 5: Privacy; Community and Online Building on their understanding of the Students continue to analyze the impact of

Interactions
• Students read about and/or discuss

data-collecting innovations,
privacy issues, ways in which
computing affects our ability to
build community, and
cyberbullying (causes, impacts,
and the roles of computing and
social decisions about technology).

trade-offs of digital information (EU 3.3)
and the potential benefits and harms of
computing on society (EU 7.3), students
more knowledgeably consider their own
personal data and technology use.
In researching and reflecting on the
availability of their own personal
information on the Internet, students
discuss how computing allows people and
organizations to know more about other
people by making connections among data
(EU 3.2).
Students also discuss ways we use
technology to communicate and interact in
society (EU 7.1).
This lab builds toward these EUs by
asking students to focus on information
that is available online about them (or
someone they know), discuss why privacy
is good to protect, and consider reasons for
giving up that privacy. This lab provides
students an opportunity to learn about
innovations that collect data about people.
The lab requires students to examine
communications technology, discuss ways
in which computing affects the ability to
build community, and the positive and
negative effects of certain computing
technology, including social media and its
capabilities.

computing (LO 7.3.1) as they consider
how data management involves
computational manipulation (LO 3.3.1).
Reflecting on their own data and
technology, students extend their insights
to consider how large data sets of many
people’s data (LO 3.2.2) affect large-scale
communication, interaction, collaboration,
and problem-solving (LO 7.1.1, LO
7.1.2).

Outline	of	BJC	Unit	3:	Lists	

Description		

Programming	
This unit focuses on lists, an aggregate data type for storing multiple items of any type, including numbers, strings, other lists, or even
blocks. Just as functions can take numbers and strings as inputs, they can also take lists as input, or produce lists as output. A list is an
ordered, numbered sequence of items. Similar data types in other programming languages may be called “arrays,” “sequences,” or
“vectors.”
This unit also focuses on several powerful list-processing functions, including the higher-order functions map, keep, and combine.
These functions are called “higher order” because, along with other data, they take functions as inputs. For example, often a
programmer wants to compute some function of each item in a list. Instead of writing separate procedures such as “take the first letter
of each item,” “add 3 to each item,” etc., the map function generalizes the “... of each item” part, and takes another function as input
to specify the “first letter of” or “add 3 to” part.
One of several design features that distinguishes BJC from other CS Principles curricula is that we emphasize functional
programming. One virtue of the higher order list functions is that they generate new lists to report, rather than mutate existing lists.
This is in contrast with the imperative, looping, mutation-based programming that is more common, but more error-prone, in dealing
with sequential data. No attention (for now) needs to be placed on the idea of procedures as data; the Snap! visual representation of
higher order functions makes the use of a function (rather than the value it reports) as input apparent at a glance. The grey ring that
represents a procedure as data is already in the higher order function block, and the user of the higher order function doesn’t have to
do anything else to make the function itself, rather than a value it reports, be taken as the input. Near the end of the course, students
build these higher order functions for themselves.
In situations in which imperative programming is needed, we still use a higher order procedure, for each item, a C-shaped block
that takes a list and a script to be run for each item in the list. This avoids the need for index variables.

Social	Implications	
The social implications topics in Unit 3 are search and encryption (part 1). In both cases, the readings from Blown to Bits describe the
underlying technology and also raise questions about risks. The BJC lab pages focus more on the latter. In the case of searching, the
main issues are about user profiling (for serving advertising and for tailoring search results) and about bias in results (profile-based or

otherwise). For encryption, we do emphasize how revolutionary public key cryptography has been, but the main emphasis is on how
the various social stakeholders view the question of strong encryption of user data.

Big	Ideas	2,	3,	4,	5,	7	
As students work with lists to manage data and information (Big Idea 3), they use abstraction (Big Idea 2), such as abstract data
types, to manage the complexity of datasets. They also create algorithms (Big Idea 4) using higher-order functions and implement
these algorithms in various programs (Big Idea 5) that use lists and list functions.
In the Social Implications Labs, students continue their study of the global impact (Big Idea 7) of computing, now by focusing on the
impact and storage of user data.

Computational	Thinking	P1,	P2,	P3,	P6	
Lists are an important data structure, and learning to think of lists as a single object (rather than many objects) is a way students
practice abstracting (P3). We introduce the idea of implementing an abstract data type by writing constructor and selector functions.
Students continue to collaborate (P6) through pair programming.
Each lab is built around a small “app” project, such as a contact list app, a computational artifact (P2) created by the student. This
connects computing (P1) with the cell phone apps students understand.

Enduring	Understandings	
• EU 2.1 A variety of abstractions built on binary sequences can be used to represent all digital data.
• EU 2.2 Multiple levels of abstraction are used to write programs or create other computational artifacts.

• EU 3.2 Computing facilitates exploration and the discovery of connections in information.
• EU 5.1 Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve

problems (to help people, organizations, or society).
• EU 5.2 People write programs to execute algorithms.

• EU 5.3 Programming is facilitated by appropriate abstractions.
• EU 5.5 Programming uses mathematical and logical concepts.

• EU 6.3 Cybersecurity is an important concern for the Internet and the systems built on it.

• EU 7.2 Computing enables innovation in nearly every field.
• EU 7.5 An investigative process is aided by effective organization and selection of resources. Appropriate technologies and

tools facilitate the accessing of information and enable the ability to evaluate the credibility of sources.

Learning	Objectives		
• LO 1.2.2 Create a computational artifact using computing tools and techniques to solve a problem. [P2]
• LO 1.2.5 Analyze the correctness, usability, functionality, and suitability of computational artifacts. [P4]

• LO 2.2.1 Develop an abstraction when writing a program or creating other computational artifacts. [P2]
• LO 2.2.2 Use multiple levels of abstraction to write programs. [P3]

• LO 2.2.3 Identify multiple levels of abstractions that are used when writing programs. [P3]
• LO 5.1.3 Collaborate to develop a program. [P6]

• LO 5.3.1 Use abstraction to manage complexity in programs. [P3]
• LO 5.5.1 Employ appropriate mathematical and logical concepts in programming. [P1]

• LO 6.3.1 Identify existing cybersecurity concerns and potential options to address these issues with the Internet and the
systems built on it. [P1]

• LO 7.5.2 Evaluate online and print sources for appropriateness and credibility [P5]

Major	Activities/Requirements	for	Completing	Unit	
Activities and Learning Opportunities Relationship to the

Enduring Understandings
Relationship to the
Learning Objectives

Lab 1: Introduction to Lists
• Students build a basic shopping list

app and learn that lists can store
data and that programs can access
and manipulate list contents. They

Students develop algorithms (EU 5.2) to
manage the storage and retrieval of data in
a shopping list, lists of countries, and lists
of words used to create comprehensible
sentences, and they write programs that
express and execute those algorithms (EU

Students collaborate (LO 5.1.3) to create a
computational artifact using lists and list-
processing procedures to organize
information (LO 1.2.2).

also explore various list blocks by
predicting and testing the outcome
of given expressions and scripts.
They have a first encounter with
data abstraction and structure by
using lists of words, classified by
the function they perform in
sentences, to build more complex
structures, combining words into
phrases and then combining these
phrases into sentences.

5.1).
This lab builds toward these EUs by
introducing lists as a means to manage
data for a variety of purposes, such as a
practical shopping list app. The lab
requires students to develop, program, and
run algorithms to interact with the
shopping list app’s user and to generate
English sentences based on lists of words
organized by parts of speech.

Lab 2: Nesting Lists
• Students create a contact list app

whose elements are themselves
lists. Students learn how to cull a
list to keep only the information
they need, use loops to process
lists of lists, and use data types to
make lists of coordinate pairs.

Students use multiple levels of abstraction
such as custom procedures that call
custom procedures and abstract data types
(EU 2.2).
This lab builds toward this EU primarily
by introducing data abstraction, using lists
to represent abstract data types, including
in one example an explicit type tag as part
of the representation. The lab requires
students to build a contacts app and to
modify the code with and without data
abstraction so that students experience
directly how data abstraction makes
programs more maintainable.

Students work with data abstraction at
multiple levels, creating, using and
modifying abstract data types. For
example, they create a get new
contact procedure that calls both a get
name and a get phone procedure; they
also work with a list of items whose
elements are pairs of coordinates stored as
an abstract data type point that students
create (LO 2.2.1, LO 2.2.2, LO 2.2.3).

Lab 3: Three Key List Operations
• Students use higher order functions

(functions that take other functions
as input) to process lists in various
contexts.

Students use higher order functions (EU
5.3) to perform a variety of mathematical
operations (EU 5.5).
This lab builds toward these EUs by
introducing higher order functions as a
form of abstraction over algorithms and by
using explicitly represented mathematical
functions as inputs to higher order
functions. In particular, this lab requires
students to build predicate functions (for
example, x à (x mod 2) = 1 to select odd
numbers from a list). Students are also
required to explore, with examples, why
non-associative functions aren’t useful
with the combine higher-order function.

Students use map (which applies an input
function to each item of a list) to transpose
music, perform geometric transformations
on shapes, perform algebraic functions on
list items, etc. They use keep (which
filters a list) to select desired list items.
And they use combine (which combines
list items using an input binary operation)
to sum, average, or find the maximum
value in a list of numbers. These higher
order functions are themselves
abstractions (LO 5.3.1, LO 5.5.1).

Lab 4: Combining List Operations
• Students practice using higher-

order list-processing functions in
several contexts both to build their
facility and to learn to think in
terms of what these functions can
do. This lab does not introduce
new ideas, but focuses on mastery
and application.

Students think simultaneously about lists
as a single object and, at the same time, as
a set of elements to be processed (EU 2.1)
as they build encoding/decoding functions
and a tic-tac-toe game.
This lab builds toward this EU with a
mini-project in which students are
required to use lists to represent text to be
encyphered or decyphered and the moves
in a tic-tac-toe game. Students must also
use procedural abstraction; for example, a
procedure to test whether player X has
won in tic-tac-toe is built out of a
procedure that reports a list of cells in
which X has moved, a procedure that

Students compose higher order functions
to develop a tic-tac-toe script that checks
the board for wins (LO 2.2.2).

reports all of the eight winning
combinations of squares, and a function
that tests whether a list of cells matches a
particular winning combination.

Lab 5: Search
• Students learn about how search

engines work, what is included and
excluded from the results, the
information that search engines can
collect about your searches, and
the implications of how the search
engines might use that data. They
also consider how they might
design their own search engine,
and in doing so, examine their own
values and priorities.

Students consider what data search
engines collect, how the data can be
processed to discover connections in
information (EU 3.2), and how
innovations can come of access to
information (EU 7.2).
This lab builds toward these EUs by
focusing attention on Internet search
engines, which are an excellent example
of how computers help with the discovery
of connections within varied information
and have contributed tremendously toward
innovation. This lab requires students to
compare results of different search engines
and (primarily through readings from
Blown to Bits) to explore the algorithms
used by search engines. Students also
consider the issues of privacy and result
bias and how they might design a better
search engine.

Students consider questions like: How
important is privacy to me? What sources
of information might be overlooked by the
engineers who design these search engines
at large companies? What phrases have
special meaning to me that Yahoo or
Google don’t seem to know about? (LO
1.2.5).

Lab 6: Encryption
• Students learn about encryption

and decryption methods, consider
why encryption is an issue, and
engage in a debate in which they
consider the viewpoints of

Students consider the value of
cybersecurity to society (EU 6.3). They
also choose and research an innovation
that is affected by issues of encryption and
do online research on their topic (EU 7.5).
This lab builds toward these EUs by

Students explore the basic programming
concepts involved in cybersecurity (LO
6.3.1), and conduct online research
requiring the evaluation of sources for
appropriateness and credibility (LO 7.5.2).

governments, civil liberties groups,
and businesses regarding the
availability of encryption software.

considering both the technology (public
key vs. private key) and the social
implications of encryption. Students
debate the issue of government access to
encrypted data and explore how
encryption supports non-obvious
innovations, such as self-driving cars.

Outline	of	BJC	Unit	4:	The	Internet	and	Global	Impact	

Description		

Programming	
Unit 4 addresses the structure of the Internet, the various protocols on which it runs, and the implications of this technology to society.
Students learn to recognize HTML and learn that it is another computer language, and they learn to “scrape” an HTML page for data.
They build on their work in Unit 3 to analyze lists containing data using Snap! procedures and strategies they have already learned.

Social	Implications	
Students first consider what rules perhaps ought to exist regarding behavior or content on the Internet. They use the Blown to Bits
reading and what they’ve learned about the Internet throughout this Unit to discuss the challenges of regulating the Internet, look at
ways that countries (including the United States) approach regulation and censorship of online content, examine statistics about
Internet usage around the world.
Students continue to familiarize themselves with the AP Explore Task requirements, specifically by examining an innovation that
addresses a social issue to which they feel some personal connection. They first identify social issues they care about and learn some
ways that technology has been used to address the issue and then use the AP Explore Task prompts to guide them towards thinking
and writing about potential benefits and possible unintended negative consequences of the innovation.

Big	Ideas	2,	3,	6	
The purpose of this unit is to address the Internet (Big Idea 6) and begin to address data and information (Big Idea 3), which is
further addressed in Unit 5: Algorithms and Data. Students learn about the power of the fundamental abstractions (Big Idea 2) of the
Internet including the two most essential protocols: IP, which builds one Internet out of a vast collection of local networks; and TCP,
which allows the Internet to function reliably despite the lack of reliability of the physical infrastructure. Students also learn how the
hierarchies of domain names and IP addresses make scalability possible.
Students also analyze and interpret a collection of GPS coordinates of potential clients for a (fictional) burger company by modeling
the data (Big Idea 3), identifying clusters of data, and finding the centers of those clusters (prospective restaurant locations).

Computational	Thinking	P1,	P3,	P4,	P5,	P6	
Students learn to identify and describe the abstractions (P3) of the Internet, continue to collaborate (P6) as they pair program, and
communicate (P5) as they connect computing (P1) to society in the Social Implications labs and describe the meaning of the results
of their analysis (P4) of the GPS Data.

Enduring	Understandings	
• EU 1.2 Computing enables people to use creative development processes to create computational artifacts for creative

expression or to solve a problem.

• EU 2.1 A variety of abstractions built on binary sequences can be used to represent all digital data.
• EU 3.1 People use computer programs to process information to gain insight and knowledge.

• EU 3.2 Computing facilitates exploration and the discovery of connections in information.
• EU 4.1 Algorithms are precise sequences of instructions for processes that can be executed by a computer and are

implemented using programming languages.
• EU 5.4 Programs are developed, maintained, and used by people for different purposes.

• EU 5.5 Programming uses mathematical and logical concepts.
• EU 6.1 The Internet is a network of autonomous systems.

• EU 6.2 Characteristics of the Internet influence the systems built on it.
• EU 6.3 Cybersecurity is an important concern for the Internet and the systems built on it.

• EU 7.1 Computing enhances communication, interaction, and cognition.
• EU 7.3 Computing has a global affect — both beneficial and harmful — on people and society.

• EU 7.4 Computing innovations influence and are influenced by the economic, social, and cultural contexts in which they are
designed and used.

• EU 7.5 An investigative process is aided by effective organization and selection of resources. Appropriate technologies and
tools facilitate the accessing of information and enable the ability to evaluate the credibility of sources.

Learning	Objectives		
• LO 1.2.2 Create a computational artifact using computing tools and techniques to solve a problem. [P2]
• LO 1.2.3 Create a new computational artifact by combining or modifying existing artifacts. [P2]

• LO 1.2.5 Analyze the correctness, usability, functionality, and suitability of computational artifacts. [P4]
• LO 2.1.1 Describe the variety of abstractions used to represent data. [P3]

• LO 2.1.2 Explain how binary sequences are used to represent digital data. [P5]
• LO 3.1.1 Use computers to process information, find patterns, and test hypotheses about digitally processed information to

gain insight and knowledge. [P4]
• LO 3.1.2 Collaborate when processing information to gain insight and knowledge. [P6]

• LO 3.1.3 Explain the insight and knowledge gained from digitally processed data by using appropriate visualizations,
notations, and precise language. [P5]

• LO 3.2.1 Extract information from data to discover and explain connections, patterns, or trends. [P1]
• LO 4.1.1 Develop an algorithm for implementation in a program. [P2]

• LO 4.1.2 Express an algorithm in a language. [P5]
• LO 5.1.1 Develop a program for creative expression, to satisfy personal curiosity, or to create new knowledge. [P2]

• LO 5.5.1 Employ appropriate mathematical and logical concepts in programming. [P1]
• LO 6.1.1 Explain the abstractions in the Internet and how the Internet functions. [P3]

• LO 6.2.1 Explain characteristics of the Internet and the systems built on it. [P5]
• LO 6.2.2 Explain how the characteristics of the Internet influence the systems built on it. [P4]

• LO 6.3.1 Identify existing cybersecurity concerns and potential options to address these issues with the Internet and the
systems built on it. [P1]

• LO 7.1.1 Explain how computing innovations affect communication, interaction, and cognition. [P4]
• LO 7.3.1 Analyze the beneficial and harmful effects of computing. [P4]

• LO 7.4.1 Explain the connections between computing and economic, social, and cultural contexts. [P1]
• LO 7.5.1 Access, manage, and attribute information using effective strategies. [P1]

• LO 7.5.2 Evaluate online and print sources for appropriateness and credibility [P5]

Major	Activities/Requirements	for	Completing	Unit	
Activities and Learning Opportunities Relationship to the

Enduring Understandings
Relationship to the
Learning Objectives

Lab 1: Website Data
• After reading a brief primer on the

Internet, students import web data
into Snap!, split the lines of HTML
into items in a list, and perform
string operations to access
information.

To support importing and processing
HTML, students gain very basic
familiarity with the code for graphic
design algorithms (EU 4.1).

They also begin to learn about how the
characteristics of the Internet influence the
systems built on it (EU 6.2).
This lab builds toward these EUs by
focusing on the basic structures of the
Internet including some of its history,
network redundancy, domain name
hierarchy, HTTP, HTML, and accessing
web data via HTTP in Snap!. The lab
offers written and video information on
these characteristics of the Internet and
requires students to develop algorithms to
import CSV (comma separated values)
data and organize it into a list of lists and
also to import HTML.

Students learn about HTML and CSS, two
common special-purpose languages (LO
4.1.2); the difference between the World
Wide Web and the Internet; URLs; the
physical structure and history of the
Internet (LO 6.1.1); network redundancy;
and the domain name hierarchy (LO 6.2.1,
LO 6.2.2).

Lab 2: GPS Data
• In this lab, students use Snap! to

model and process a batch of GPS
coordinates representing the
locations of potential clients for a
(fictional) new restaurant chain in
New York City. Building on the
work on reading data from Lab 1,
students create an appropriately-
scaled model of the data and
analyze it to determine the optimal
location for the new business.

Students develop an algorithm (EU 4.1) to
process information (EU 3.1) and discover
connections in the information—clusters
representing where new restaurants should
be built (EU 3.2).

This lab builds toward these EUs by
focusing on a business scenario—
analyzing GPS coordinates to determine
the ideal neighborhood for a new
restaurant. The lab offers basic
information on GPS coordinates and
strategies for visualizing that data, and
requires students to build a program to
scale and plot the data and use the results
to draw conclusions about where the new
restaurant should be.

Students collaborate (LO 3.1.2) as they
develop an algorithm to process the GPS
data (LO 4.1.1), find patterns to gain new
knowledge (LO 3.1.1, LO 3.1.3, LO
5.1.1), and discover and explain patterns
and trends (LO 3.2.1).

Lab 3: Number Representation
• Students learn about binary and

hexadecimal representations,
binary sequences, and how
computers represent integers and
non-integers.

Students learn about the abstractions that
are value representations (EU 2.1) and
translate among binary, decimal, and
hexadecimal notation (EU 5.5).

This lab builds toward these EUs by
focusing on ideas of binary data,
sequences, and representation. The lab
offers explanation of floating point, binary
and hexadecimal representation, and the
use of HEX in RGB color and IP
addresses. The lab also requires students
to explore factorial outputs both with and
without bignums to convert between
binary, decimal, and hexadecimal

Students learn about bits and bit width
(LO 2.1.1) and representations of digital
data (LO 2.1.2), and they translate among
three common number bases (LO 5.5.1).

representations.
Lab 4: Network Protocols

• Students learn about the
abstractions that make the Internet
(especially TCP/IP), and the
history and impact of the
organizations controlling the
communication standards and
addressing systems for the Internet.
Students also identify the IP
address of the computer they are
using by scraping the results of a
“my ip address” query to a Server
engine.

Students consider how the characteristics
(e.g., technical limitations and open
standards) of the autonomous system that
is the Internet influences the systems on
the network (EU 6.1, EU 6.2).

This lab builds toward these EUs by
focusing on the TCP/IP protocol. The lab
presents text and video on IP address
hierarchy, IPv4 and IPv6, TCP, and open
standards. The lab requires students to
develop a script to determine the
computer’s IP address, to explore a
simulation of TCP, to discuss the
fundamental unreliability of the internet
and how we address that, and to review
and discuss the basic abstractions of the
Internet.

Students learn about IP address hierarchy,
IPv4 vs. IPv6, packets and packet
switching, reliable data transmission, open
standards, the Internet abstraction
hierarchy and how these systems
interrelate (LO 6.1.1, LO 6.2.1, LO
6.2.2).

Lab 5: Weather App
• Students create a weather app

building on their work scraping
data from web pages in Lab 1.
They scrape a weather website for
information, importing HTML to
Snap!; produce a multi-city
weather report; and use IP address
information to determine current
local conditions.

Scraping an existing development effort (a
weather site) for relevant data, students
create a weather app that solves the age-
old problem of needing to know the
weather (EU 1.2, EU 3.1).
This lab builds toward these EUs by
focusing on the development of a weather
app. The lab requires students to send data
to and scrape data from a weather website
and to develop a presentation mechanism
for that data.

Students collaborate (LO 3.1.2) to create a
new computational artifact using the
http procedure (LO 1.2.2) together with
the weather website (LO 1.2.3) and then
selecting and communicating specific
information to the user (LO 3.1.3).

Lab 6: Internet Security
• Students read about various

cybersecurity risks and the basic
concepts of cryptography. They
develop a simple encryption script.

Students read about cybersecurity issues
(e.g., lack of DNS security, common
attacks) (EU 6.3).

This lab builds toward this EU by focusing
entirely on common security attacks and
the ways that cryptography, open
standards, and certificate authorities help
to protect against these threats. The lab
offers video and text about cybersecurity
issues and requires students to develop a
simple encryption program.

Students learn about common security
attacks (bug exploits, viruses, phishing,
and DDoS attacks) and learn about
security measures they can take (LO
6.3.1).

Lab 7: Censorship and Computing
around the World

• Students read from Blown to Bits
Chapter 7, consider what rules (if
any) ought to exist on the Internet,
and learn some of the practical
difficulties of regulating Internet
content. Students then consider
issues of free speech and how
global Internet leads to issues
when different countries have
different standards for what should
be censored. They examine
statistics for Internet use around
the world.

Students learn about some of interpersonal
risks of using the Internet (EU 7.1, EU
7.4) and the tension between free speech
and security against these risks (EU 6.1,
EU 7.3).
This lab builds toward these EUs by
focusing on the use and ethics of the
Internet and some of the practical
difficulties of regulating Internet content.
The lab offers assigned reading, discussion
prompts, and classroom activities. The lab
requires students to reflect on how the
nature of the Internet impacts issues of
censorship, access, regulation, safety, and
how computers are used to create
computational artifacts.

Students consider questions like: Should
people be allowed to say and post
anything they want on the Internet? Who
should be held responsible for the harm
that could result in a case involving
“cyber-predators” on a site like MySpace?
Why should people in the United States
care about Internet rules in other
countries? This is also an opportunity for
students to think further about their own
role as digital citizens (LO 6.3.1, LO
7.1.1, LO 7.3.1, LO 7.4.1).

AP	Through-Course	Assessment:	Explore	–	Impact	of	Computing	Innovations	Performance	Task	
• After completing Unit 4, students complete through-course assessment Explore - Impact of Computing Innovations (8 hours in

class). The work in Unit 4 Lab 8 is prepares students well for completing this performance task.

Lab 8: Innovating for Social Change
• This lab helps students prepare for

the AP Explore task by exposing
them to the range of prompts they
will encounter. They consider how
technology might address a social
issue they care about by
identifying personally relevant
social issues and learning ways
technology has been used to make
a difference in those areas.

Students consider the purposes (EU 5.4,
EU 7.4) and social benefits of computing
(EU 7.1, EU 7.3) by selecting a positive
impact to research (EU 7.5).
This lab builds toward these EUs by
focusing on how technology can and
cannot solve various social issues and how
the same technological innovation can
have both harms and benefits. The lab
offers various reflection questions and
discussion prompts to help students
investigate these ideas deeply. The lab
requires students to research and write
about an innovation in preparation for the
AP Explore Task.

Students research (LO 7.5.1, LO 7.5.2)
and analyze the contextual suitability (LO
1.2.5, LO 7.4.1) and effects (LO 7.1.1,
LO 7.3.1) of a computing innovation.

Outline	of	BJC	Unit	5:	Algorithms	and	Data	

Description		

Programming		
This unit focuses on several types of analysis: analysis of problems to generate algorithms for their solution; analysis of the algorithms
(especially of the time it takes to execute them) in order to optimize them; analysis of phenomena by generating models and
simulations that give insight and help one generate and test hypotheses; and analysis of data, especially including visualization.
Students have been generating algorithms to solve problems from the start of this course, but have not yet focused on analyzing them
for efficiency. For small enough computational problems, such analysis isn’t needed. But modeling complex phenomena and handling
large data sets requires understanding that there are sometimes alternative algorithms that reduce the impact of the size of a model on
the time it takes to execute. In-depth coverage of this broad domain (computational complexity, data analysis, modeling and
simulation) is beyond the scope of an introductory course, but Unit 5’s projects in each of these areas will give students a good first-
approximation understanding of these issues.

Social	Implications		
Students learn the meaning of copyrights and patents, discuss their impact and relevance in an increasingly computationally mediated
world, and learn about the simultaneous invention of the telephone.

Big	Ideas	2,	3,	4,	5	
The big focus of Unit 5 is on analyzing algorithms (Big Idea 4) and data and information (Big Idea 3). Students explore various
ways to process, create, analyze, and visualize data through their experiments and simulations relying and building on their experience
with programming (Big Idea 5) and abstraction (Big Idea 2).

Computational	Thinking	P1,	P2,	P4,	P5,	P6	
Students create several computational artifacts (P2) including a program for graphing data and functions, a simulation of traffic
flow that lets them analyze traffic behavior on a highway, and an extension of a game from Unit 2. Students analyze problems (e.g.,
the traffic flow, list searching algorithms, and data scaling) to create suitable algorithms for solving them, and they create a timer
program to help them analyze programs (P4) for their computational efficiency. Students continue to connect computing (P1) to the
human experience in two contexts: through the data analysis and traffic simulation; and as they learn about copyrights, patents, and the
simultaneous inventions. Students continue to communicate (P5) and collaborate (P6) through pair programming.

Enduring	Understandings	
• EU 2.3 Models and simulations use abstraction to generate new understanding and knowledge.
• EU 3.1 People use computer programs to process information to gain insight and knowledge.

• EU 4.2 Algorithms can solve many but not all computational problems.
• EU 5.2 People write programs to execute algorithms.

• EU 7.1 Computing enhances communication, interaction, and cognition.
• EU 7.2 Computing enables innovation in nearly every field.

• EU 7.4 Computing innovations influence and are influenced by the economic, social, and cultural contexts in which they are
designed and used.

Learning	Objectives		
• LO 1.2.3 Create a new computational artifact by combining or modifying existing artifacts. [P2]

• LO 1.2.5 Analyze the correctness, usability, functionality, and suitability of computational artifacts. [P4]

• LO 2.3.1 Use models and simulations to represent phenomena. [P3]

• LO 2.3.2 Use models and simulations to formulate, refine, and test hypotheses. [P3]

• LO 3.1.2 Collaborate when processing information to gain insight and knowledge. [P6]

• LO 3.1.3 Explain the insight and knowledge gained from digitally processed data by using appropriate visualizations,
notations, and precise language. [P5]

• LO 3.3.1 Analyze how data representation, storage, security, and transmission of data involve computational manipulation of
information. [P4]

• LO 4.2.1 Explain the difference between algorithms that run in a reasonable time and those that do not run in a reasonable
time. [P1]

• LO 4.2.2 Explain the difference between solvable and unsolvable problems in computer science. [P1]

• LO 4.2.3 Explain the existence of undecidable problems in computer science. [P1]

• LO 4.2.4 Evaluate algorithms analytically and empirically for efficiency, correctness, and clarity. [P4]

• LO 5.2.1 Explain how programs implement algorithms. [P3]

• LO 6.2.2 Explain how the characteristics of the Internet influence the systems built on it. [P4]

• LO 6.3.1 Identify existing cybersecurity concerns and potential options to address these issues with the Internet and the
systems built on it. [P1]

• LO 7.1.2 Explain how people participate in a problem-solving process that scales. [P4]

• LO 7.2.1 Explain how computing has impacted innovations in other fields. [P1]

• LO 7.4.1 Explain the connections between computing and economic, social, and cultural contexts. [P1]

Major	Activities/Requirements	for	Completing	Unit	
Activities and Learning Opportunities Relationship to the

Enduring Understandings
Relationship to the
Learning Objectives

Lab 1: Algorithms
• In a reversal of their number

guessing game developed in Unit
2, students design an algorithm and
program the computer so that the
computer can guess the player’s
secret number, and the player tells
the computer if its guesses are too
high or too low. They use this as a
basis for developing and analyzing
list-search algorithms for ordered
and unordered lists.

Building on their experiences in earlier
units, students write programs to execute
algorithms (EU 5.2) and evaluate
algorithms analytically (EU 4.2).
This lab builds toward these EUs by
introducing the idea of analyzing the time
requirement of an algorithm by counting
operations. Students are required to
develop a binary search algorithm in
words and then program it.

Students develop this game by modifying
their own prior work (LO 1.2.3). As
students develop the algorithms within this
program, they discuss and describe how
they will be implemented (LO 5.2.1) and
analyze the efficiency, correctness, and
clarity of their algorithms (LO 4.2.4).

Lab 2: Graphing Data and Functions
• Students create a general graphing

program that plots data points on a
screen whose dimensions (scale)
they have determined themselves.
They extend their grapher so that it
can take a function as input and
produce its Cartesian graph.

Students use their own graphing program
to visualize data that they process to gain
knowledge and insight about a situation
(EU 3.1). They will later use it to visualize
the data they get when they time their
algorithms.
This lab builds toward this EU by having
students develop a data graphing tool as a
way to gain insight into information.
Students are required to program a
graphing app that plots arbitrary (x, y) data
from a list and can also accept a function
as input and graph the values taken by the
function over a range of inputs.

Students interpret and communicate the
results of their data-processing by using
appropriate visualizations, notations, and
precise language (LO 3.1.3).

Lab 3: Timing Experiments
• Students write a timer program that

accepts a function (and inputs) and
times the computation in
milliseconds. Students then time
several processes and use the
graphing program that they built to
graph the times against the size of
the inputs and compare the results.

Through the development of the timer
program, students continue to see that
programs are written to execute algorithms
(EU 5.2) and also build the foundation for
understanding that though algorithms can
solve many computational problems, there
are constraints that must be taken into
consideration (EU 4.2).
This lab builds toward these EUs by
having students time various algorithms,
building toward the idea that there are
identifiable families of algorithms with
similar times as a function of input size:
constant, linear, quadratic, and
exponential. Students are required to
build a timer procedure and apply it to

Students recognize constant time
processes, linear time, quadratic time, and
logarithmic time (LO 4.2.1) and evaluate
algorithms efficiency, correctness, and
clarity (LO 4.2.4).

several algorithms from earlier units.
Lab 4: Unsolvable and Undecidable
Problems

• The idea that some problems do
not have solutions is credible
enough to students, but the idea
that some cannot ever have
solutions, and that we can prove
that, is harder. We introduce the
notion through a slightly different
idea at first. Students solve
Liar/Truthteller logic puzzles to
see that some are tricky but
solvable and others set up
inherently contradictory situations
in which neither true nor false can
apply. Then they see the more
complex idea: problems for which
truth or falsity can apply, but for
which the state cannot (ever) be
logically determined. They explore
the halting problem: Can an
algorithm be developed that will
check any other algorithm to see if
it will halt and return a result?

As students learn about solvable vs.
unsolvable and undecidable problems,
they learn that algorithms can solve many
but not all computational problems (EU
4.2).
This lab builds toward this EU by
introducing students to the halting
problem as an example of an unsolvable
problem, sketching Turing’s proof by
contradiction using Snap! code rather than
Turing Machine code. It requires students
to explore and understand proof by
contradiction, starting with simple
Liar/Truthteller puzzles before using proof
by contradiction in the context of the
halting problem.

Students learn the difference between
solvable and unsolvable problems (LO
4.2.2) and about the existence of
undecidable problems (LO 4.2.3) through
work with the halting problem.

Lab 5: Data Processing

• Students import data available on
the Internet, graph and analyze the
data, identify questions to ask

Students use the graphing program they
have developed to process and gain
insights about data accessed online (EU
3.1).
This lab builds toward this EU by using

Students collaborate as they process the
data (LO 3.1.2) and discuss how people
participate in problem-solving processes at
larger scales (LO 7.1.2).

about the data, and process the data
to answer their questions.

the graphing program from Lab 2 to
analyze data retrieved from a web page,
working from small examples up to a
million-point data set. Students are
required to answer questions about the
data by using the programming tools they
learned earlier to manipulate lists.

Lab 6: Traffic Simulation
• Students build a simulation to

model and explore highway traffic.
Students adjust various constraints
(acceleration and deceleration
rates, intended speed, number of
cars on the road) and conduct
experiments about the resulting
traffic patterns.

Students use abstraction together with
simulation to model and generate new
understanding and knowledge about
highway traffic patterns (EU 2.3).
This lab builds toward this EU by
requiring students to program a simulation
(of highway traffic) so they can study how
changing constraints affects the results.

Students develop a simulation to model
the phenomenon of highway traffic (LO
2.3.1) and use their model to formulate,
refine, and test hypotheses about the
context (LO 2.3.2).

Lab 7: Copyrights and Patents
• Software patents are controversial.

In the US, software was generally
not patentable until a 1981
Supreme Court decision. Students
explore what it means to invent
something, and why software
might or might not be considered
differently from machinery. The
simultaneous invention of the
telephone by several people is used
as an example to debunk the apple-
on-head, flash-of-insight myth.

• The digital storage of information

Students consider benefits, historical
contexts, and practical issues of
innovations (EU 7.1, EU 7.2, EU 7.4).
This lab builds toward these EUs by
examining how the creative process is
affected by laws surrounding the products
of creativity: copyrights and patents,
especially software patents. Students are
required to struggle with their ideas about
the nature of invention and the way in
which creators depend on their social
context, including earlier creative works.
They also explore how computers and the
Internet have affected the distribution of

Students discuss the effects of DRM
software (LO 1.2.5), the tradeoff between
protecting copyrights with DRM and the
inconvenience and potential loss of
information that DRM entails (LO 3.3.1),
and the tradeoff between open standards
and software patents (LO 6.2.2).
Students also consider the good or bad
effects of streaming software such as
BitTorrent (LO 6.3.1), the benefits of
Creative Commons and other free
licensing schemes (LO 7.2.1), and how
technology such as region coding on
DVDs affects the global digital divide

makes the marginal cost of a
perfect copy zero. In principle that
shouldn’t affect the rights of
artists, but in practice, many
people feel free to copy media both
for their own use and to give to
friends. When classes are polled on
this topic, most or all hands go up
both for “who thinks it’s wrong to
pirate music or movies” and for
“who has pirated music or
movies?” This is a springboard
into a class discussion of how laws
have changed, how artists should
be supported, and the use of
encryption to enforce copyright.

creative works and the implications for
creators.

(LO 7.4.1).

Outline	of	BJC	Unit	6:	Trees	and	Other	Fractals	and	Unit	7:	Recursive	and	Higher-Order	Functions	
Note: At the end of Unit 5, all of the CSP curriculum framework has been addressed. Units 6 and 7 contain additional material that’s
important to BJC, but part of Unit 6 and all of Unit 7 will come after the AP exam in May.

AP	Through-Course	Assessment:	Create	–	Applications	from	Ideas	Performance	Task	
• After completing Unit 6 and/or before the AP exam, students complete the through-course assessment Create - Applications

from Ideas (12 hours in class).

Unit	6	Description		
Recursion and functional programming are two programming techniques that go beyond the Framework requirements,
but are at the heart of what makes BJC unique. Unit 6 is about recursive commands, mainly fractals.
It starts with a teacher demonstration of the Vee project, in which a short program generates V shapes with randomly
chosen decorations at the ends.
This same program suddenly generates arbitrarily complex results if the Vee procedure itself is added to the list of
possible decorations.
This is a teacher demonstration rather than an independent lab
activity because the collective gasp of the class is itself a valuable
learning experience.
After the demonstration, students develop their own fractal tree
program by building up from small cases (a one-level tree is just a
trunk; a two-level tree is a trunk with a vee above it, etc.) so that
they are not confronted at first with the seeming “cheating” of a
procedure calling itself. Only after they’ve written several almost-
identical procedures does the lab suggest combining them into one.
The students then discover why recursive procedures need a base
case to terminate the recursion.
Once the tree fractal is thoroughly understood, students go on to construct other fractals (Koch snowflake, Sierpinski gasket, etc.).

The elegance of the programs themselves helps students see computer programs, and not just the effects they produce, as things of
beauty. A key moment in developing that sense is when students understanding how a short recursive procedure can generate a deeply
complex computational process.
This unit also contains a Social Implications lab exploring the effects of computers on jobs (including both the displacement of old
categories of work by new ones and the on-the-job experience of workers whose output is measured by computers) and on warfare
(with an emphasis on drones and why they make a qualitative difference in the political cost of war).

Unit	7	Description		
Unit 7 is about recursive functions, combining the ideas of recursion, from Unit 6, and functional programming, introduced in Unit 3
with the higher order functions on lists. One highlight of the course is the implementation by students of three key list operations:
map, keep, and combine.
After a brief introduction to the form of a recursive function (in which the recursive call is an input to a combining function, as
opposed to a separate instruction as in recursive commands), we work through the example of Pascal’s triangle. As part of that lab, we
see how the naïve implementation takes exponential time, but techniques such as memoization can be used to create an efficient
program that still maintains the essentially recursive definition of Pascal’s triangle.
Other examples in the unit include conversion of numbers to and from binary, which is then generalized to arbitrary bases (up to 36,
using all the letters as digits); finding the subsets of a set (a simple example of a computation that’s unavoidably exponential in time,
because the desired output is exponentially large); and sorting lists (using mergesort to exemplify O(n log n) algorithms, because the
algorithm is simpler than Quicksort and is guaranteed n log n rather than just probabalistically n log n).
Finally, students build simple examples of recursive procedures that apply a function to every item of a list (square all the numbers,
take the first letter of all the words, and so on), then generalize that pattern to write the map function, and similarly for keep and
combine. This last programming lab is one highlight of the course, because it combines several central ideas: abstraction, functional
programming, and recursion.

