
 
 

 

 

AP CS Principles: Beauty and Joy of Computing 

Course Overview: 
BJC covers the entire 2020 CS Principles Framework and addresses the 
five Big Ideas with a primary emphasis on programming and abstraction 
(Big Idea 3: Algorithms and Programming). As much as possible, BJC uses programming 
as the vehicle to tell other parts of the story; for example, by presenting data (Big Idea 2: 
Data) not through commercial database software but by writing programming projects 
that manipulate data sets as lists. 
The secondary emphasis of BJC is on the social implications of computers (Big Idea 5: 
Impact of Computing). Social topics are included in every unit, and students are 
encouraged to think critically about each application of technology. Purpose-driven 
program development (Big Idea 1: Computational Solution Design) is addressed 
throughout the units with special focus in the Practice Create Task. And there is 
particular attention to the Internet (Big Idea 4: Computing Systems and Networks) in 
Unit 4. 
Snap!, the programming language used in BJC, was developed specifically for this 
curriculum. Its visual, drag-and-drop design is based on that of Scratch, so that it is 
accessible to a wide audience and not intimidating, but the language, itself, is extended 
with the abstraction mechanisms needed for serious computer science: first class 
procedures for control abstraction and first class lists for data abstraction. These 
capabilities are embodied in carefully chosen visual metaphors so that ideas traditionally 
considered difficult can be understood and enjoyed by beginners. 

Course Resources (all free): 

• Beauty and Joy of Computing curriculum (bjc.edc.org) 
• Beauty and Joy of Computing Teacher Guide (bjc.edc.org/teacher; visit 

bjc.link/guideaccess for initial access) 
• Blown to Bits. Abelson, H., Ledeen, K., & Lewis, H. 2008, Addison-Wesley. 

(bitsbook.com/thebook; scroll down for free PDF) 
• Snap! programming language (snap.berkeley.edu/run) 

Course Outline: 

Unit 1: Introduction to Programming 

Students develop an interactive game they can install on their phones, generate a 
conversation between animated characters, create abstract art, and explore storytelling 
animation through sprite interaction (AAP); and in doing so, they learn to use pair 
programming and to create program documentation. (CRD) Students also investigate 
legal and ethical issues that arise in computing—especially with regard to data collection 
and privacy (IOC). 

https://snap.berkeley.edu/run
https://bitsbook.com/thebook
https://bjc.edc.org/teacher
https://bjc.edc.org


Unit 2: Abstraction 

Students implement an algorithm for a guessing game using local and global variables; 
use abstract data types and list traversal to build a quiz app; create predicates to filter lists 
in order to solve a crossword puzzle; and use the modulus function and a higher order 
function to code mathematical functions (AAP). Students also investigate the history, 
purpose, laws, evolution, and enforcement of copyright (IOC). 

Unit 3: Data Structures 

Students explore complexity in a variety of contexts (maze navigation, fractal art, tic-tac-
toe); use nested abstract data types and data I/O to develop a contact list app; and 
consider the beneficial and harmful impacts of robots and AI (CRD, AAP, IOC). 

Practice AP Create Task 

Students create a project of their own choosing as practice for the AP Create Task. They 
select and use a development process, plan and code their program, test their program for 
errors, write about their development process, and acknowledge any code developed by 
other people (CRD). 

Unit 4: How the Internet Works 

Students learn about how the Internet works, the benefits and vulnerabilities of fault-
tolerant systems; cybersecurity practices such as public key encryption and individual 
level practices and software to keep data safe; digital data representation including binary 
representation; compression algorithms (CSN, IOC, DAT). They also consider the 
impact of the Internet on human communication and the workplace (CRD, IOC). 

Unit 5: Algorithms and Simulations 

Students learn about program efficiency through exploration of the binary and linear 
search algorithms; learn about sequential, parallel, and distributed computing and 
determine the contexts in which each are most useful; consider the contexts in which 
simulation is useful and implement a simple simulation; use Snap! data tools to generate 
knowledge from data (AAP, CSN, DAT). 

AP Create Task 

Students complete the AP Create Task (12 hours in class). 
Note: Units 1-5, the Practice Create Task, and the Create Task cover the CSP curriculum 
framework. Units 6-8 contain additional material that’s important to BJC including the 
abstraction hierarchy of how computers work, recursion and functional programming. 

Unit 6: How Computers Work 

Building on their understanding of abstraction and the way computers store data, students 
learn about the computer system abstraction hierarchy, with application software on top 
and transistors at the bottom. 



Unit 7: Fractals and Recursion 

Students deepen their experience with recursion and functional programming through 
drawing projects that use recursive commands, mainly fractals. 

Unit 8: Recursive Functions 

Students extend their understanding of abstraction and recursion through exploration of 
recursive functions: sorting lists (both selection sort and partition sort), Pascal's triangle, 
converting numbers to and from binary, finding the subsets of a set, and building several 
higher order functions from scratch. 

Example Activities Aligned to AP Big Ideas: 

Big Idea 1: Creative Development 

In the Practice Create Task, students plan the development process (CRD-2.E) of a 
project of their own choosing, plan their program's behavior and how they will meet their 
own specifications (CRD-2.F), acknowledge code written by other people (CRD-2.H), 
test their code by identifying inputs and expected outputs (CRD-2.J), and identify and fix 
any problems with their code (CRD-2.I). 

Big Idea 2: Data 

Unit 5 Lab 3: Turning Data into Information begins with an introduction to data analysis 
in which students analyze and describe their findings about global health data (DAT-2.A) 
and describe what they learn through the interactive interface (DAT-2.E). The majority 
of the lab consists of a data processing project in which students import a database and 
answer questions about their dataset (DAT-2.D). Students also describe possible 
challenges of collecting data (DAT-2.C) and what information can be extracted from 
metadata (DAT-2.B). 

Big Idea 3: Algorithms and Programming 

In Unit 2 Lab 1: Games, students build a number-guessing game in which the player tries 
to guess the computer's secret number (AAP-2.B). They use a local variable to store the 
secret number and a global variable to store the player's score (AAP-1.A) and use random 
numbers (AAP-3.E) to model language and to generate the secret number. In doing so, 
they learn how to assign a value to a variable and how to determine the result of 
sequential variable assignments (AAP-1.B), and they use lists to store the computer 
player's character costume options (AAP-2.N). 

Big Idea 4: Computing Systems and Networks 

Unit 4 Lab 1: Computer Networks introduces the structure and protocols of the Internet. 
Students learn how the Internet is different from the World Wide Web (CSN-1.D); how 
computing devices are connected in a network (CSN-1.A); the benefits of, features of, 
and need for fault tolerance (CSN-1.E); and how data are sent through the Internet via 
packets (CSN-1.C). And they combine these ideas into a short paper on how the Internet 
works (CSN-1.B). 



Big Idea 5: Impact of Computing 

In Unit 4 Lab 3: Community and Online Interactions, students examine ways in which 
computing affects our ability to build community, including the digital divide (IOC-1.C) 
and the impact of crowdsourcing on scientific research and fundraising (IOC-1.E); and 
they write about the purpose and unintended consequences of a computing innovation of 
their choosing (IOC-1.B). 

Example Activities Aligned to AP Computational Thinking Practices: 

Practice 1: Computational Solution Design 

In the Practice Create Task, students prepare for the official Create Task by designing a 
program of their own choosing. Students carefully choose a program concept that will 
meet the guidelines of the Create Task and then write about their decision-making 
process as well as the program's purpose (CPT 1). 

Practice 2: Algorithms and Program Development 

In Unit 3 Lab 1 Page 1: Robot in a Maze, students use sequencing, selection, and 
repetition to plan an algorithm for escaping from a maze without actually programming 
the algorithm (CPT 2). 

Practice 3: Abstraction in Program Development 

Unit 3 emphasizes the study of abstraction as the means to control complexity. In Lab 1 
Page 4: Brick Wall, students use abstraction to create a somewhat complex program built 
on relatively simple custom blocks that specialize on specific tasks (e.g., building one 
brick, building alternating rows of bricks, building a brick wall). Then in Lab 2: Contact 
List, they build on their use of abstract data types in Unit 2 to develop a constructor that 
creates a contact to be added to a contact list and several selectors for accessing the name, 
address, or phone number for any given contact. Students then extend their use of abstract 
data types to create a nested abstract data type to store and retrieve components of the 
birthdate of each contact (CPT 3). 

Practice 4: Code Analysis 

Students begin evaluating and testing their code in Unit 1. In Lab 2: Gossip, they 
determine the result of running code that manipulates strings and code that generates 
random values, and they make prescribed changes to their own code and describe the 
resulting change in program behavior as well as the cause. In Lab 3: Modern Art with 
Polygons, they learn the purpose and practice of program documentation and learn to 
write, call, and predict the result of calling procedures (CPT 4). 

Practice 5: Computing Innovations 

In Unit 1 Lab 4: Protecting Your Privacy, students consider the information that is 
available online about them, discuss why privacy is good to protect, consider reasons for 
giving up privacy, and discuss the benefits and risks of various privacy-impacting 
computing innovations (CPT 5). 



Practice 6: Responsible Computing 

In Unit 4 Lab 2: Cybersecurity, students learn about various cybersecurity risks on the 
Internet, what they can do to protect themselves online, and the basic concepts of 
cryptography (CPT 6). 

Opportunities to Investigate Computing Innovations: 

Prompt A: Beneficial and Harmful Effects 

In Unit 4 Lab 3 Page 6: Benefits of Computing, Exercise 3, students select a computing 
innovation and write about its original purpose and unintended consequences, creating a 
two-by-two chart of consequences with axes good/bad, intended/unintended. 

Prompt B: Identifying and Explaining the Use of Data 

In Unit 5 Lab 3 Page 4: Analyzing Data, Exercise 5, student select a computing 
innovation that uses a lot of data, and describe the kinds of data it uses, the origins of 
those data, and how the application transforms the data to extract information. 

Prompt C: Privacy, Security and Storage Concerns 

In Unit 1 Lab 4 Page 4: Innovations and Privacy, Exercise 6, students select a computing 
innovation and describe the privacy concerns that it raises. 




